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1 Background

The Automated Decision System (ADS) developed for the WiDS Datathon 2025 aims to support early
identification of Attention Deficit Hyperactivity Disorder (ADHD) and to classify biological sex based on
neuroimaging and behavioral data. The stated purpose of this system is to assist researchers and clinicians
in uncovering patterns in brain function, emotional responses, and demographic characteristics that are
predictive of ADHD and sex classification. The dataset provided includes a diverse cohort of children and
adolescents, featuring functional MRI data, self-reported emotional health assessments, and demographic
variables. These insights could contribute to improving diagnostic practices and understanding the neurobi-
ological basis of ADHD.
The ADS has two primary goals: (1) predicting ADHD status, and (2) predicting biological sex. While these
are distinct classification tasks, they are performed using the same data inputs. There may be trade-offs in
model performance if the features predictive of one target interfere with the other (e.g., emotional regulation
patterns that differ by sex may confound ADHD signals). Overall, the system is designed to balance accuracy
across both objectives.

2 Input and Output

2.1 Input

The input features include 19900 FCM matrix features, 18 quantitative features, and 9 categorical features.
For the sake of analysis, we decide to only analyze a subset of categorical and quantitative features that we
find are most relevant to the task.

2.1.1 Categorical Features

We selected two categorical features for profiling:

• PreInt Demos Fam Child Ethnicity

Description: Child’s reported ethnicity
Data type: Integer
Null count: 11 missing values out of 970 training samples
Distribution: See Figure 1

• PreInt Demos Fam Child Race

Description: Child’s reported race
Data type: Integer
Null count: No missing values in 970 training samples
Distribution: See Figure 1
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Figure 1: Distributions of Race and Ethnicity categorical features

2.1.2 Quantitative Features

We profile 16 quantitative features derived from three validated instruments: the Edinburgh Handedness
Questionnaire (EHQ), the Alabama Parenting Questionnaire (APQ), and the Strength and Difficulties Ques-
tionnaire (SDQ).

• EHQ EHQ Total — Laterality Index (LI) Score
Description: Assesses an individual’s hand preference. Higher values indicate stronger right-hand
dominance.
Interpretation:

– -100: Extreme left-handed

– -28 to 48: Ambidextrous (middle range)

– +100: Extreme right-handed

Data type: Float
Null count: No missing values
Distribution: See Figure 2

• Alabama Parenting Questionnaire (APQ)

Description: Behavioral scores assessing parenting styles. Higher scores reflect more frequent occur-
rence of the corresponding behavior. The features include:

– APQ P APQ P CP — Corporal Punishment

– APQ P APQ P ID — Inconsistent Discipline

– APQ P APQ P INV — Involvement

– APQ P APQ P OPD — Other Discipline Practices

– APQ P APQ P PM — Poor Monitoring

– APQ P APQ P PP — Positive Parenting

Data type: Integer for each score
Null count: No missing values
Distribution: See Figure 3

• Strength and Difficulties Questionnaire (SDQ)

Description: A set of behavioral and emotional scales measuring children’s psychological attributes.
Higher scores typically indicate greater intensity of the measured trait (except for the prosocial scale
where higher is positive). The features include:
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Figure 2: Distribution of Laterality Index (LI) scores from the Edinburgh Handedness Questionnaire.

– SDQ SDQ Conduct Problems — Conduct Problems Scale

– SDQ SDQ Difficulties Total — Total Difficulties Score

– SDQ SDQ Emotional Problems — Emotional Problems Scale

– SDQ SDQ Externalizing — Externalizing Score

– SDQ SDQ Generating Impact — Generating Impact Score

– SDQ SDQ Hyperactivity — Hyperactivity Scale

– SDQ SDQ Internalizing — Internalizing Score

– SDQ SDQ Peer Problems — Peer Problems Scale

– SDQ SDQ Prosocial — Prosocial Scale

Data type: Integer for each score
Null count: No missing values across all SDQ scores
Distribution: See Figure 4

• Matrix Features

The dataset may include matrix-type data such as fMRI scans or connectivity matrices. However, such
features are difficult to interpret individually and are excluded from detailed analysis in this report.

We also plot the pairwise correlation heatmap (Figure 5) to examine relationships between features from the
Alabama Parenting Questionnaire (APQ) and the Strength and Difficulties Questionnaire (SDQ).
The SDQ scores exhibit strong internal correlations, especially between emotional, internalizing, and peer
problems, as well as between conduct, hyperactivity, and externalizing behaviors. This suggests that children
experiencing one type of psychological difficulty often experience others as well. Similarly, moderate correla-
tions are observed within APQ scores—most notably between positive parenting and involvement—indicating
some consistency across reported parenting practices. In contrast, cross-questionnaire correlations (between
APQ and SDQ scores) are generally weak, suggesting limited direct linear relationships between parenting
behaviors and reported child difficulties in this dataset.

2.2 Output

• Predict sex: 0 for male, 1 for female

• Predict ADHD diagnosis: 0 for negative, 1 for positive
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Figure 3: Distribution of six behavioral scores from the Alabama Parenting Questionnaire (APQ). Higher
scores indicate more frequent corresponding behaviors.

3 Implementation and Validation

3.1 Implementation

We audit a publicly available baseline solution1, which is built in Python and leverages scikit-learn and
LightGBM. The main steps are:

1. Data Loading.

• Quantitative and categorical metadata are read from the provided Excel files.
• Functional connectome matrices are loaded from CSV.

2. Preprocessing.

• Missing values in numeric features are imputed with the median; categorical features use the most
frequent category.

• Standard Scaling is performed via on all numeric features.
• Categorical encoding is handled with one-hot encoding, ignoring unseen categories in test data.

3. Model Training.

• Separate LGBMClassifier models are trained for the two targets (ADHD and Sex)(We focus on
ADHD prediction in this report).

• Hyperparameters such as num leaves, learning rate, and n estimators are set to 63 and 1000.
• Class imbalance is addressed by computing scale pos weight from class frequencies.
• Early stopping (50 rounds) is applied based on the validation F1 score to prevent over-fitting.

3.2 Validation

To gauge generalization performance, we adopted an 80/20 stratified train/validation split on the original
training set (stratifying on ADHD Outcome). After fitting the preprocessing pipeline on the training fold, we
evaluated both classifiers on the held-out 20%.
Results. On the validation set, the baseline models achieved:

1https://www.kaggle.com/code/olaflundstrom/wids-datathon-2025-adhd-analysis-notebook
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Figure 4: Distribution of nine behavioral and emotional scores from the Strength and Difficulties Question-
naire (SDQ).

• ADHD prediction: F1 = 0.8499

4 Outcomes

4.0.1 Fairness

In the context of ADHD screening the cost of a missed diagnosis is high, so we place primary emphasis on:

• Recall (
TP

TP + FN
) — the fraction of true ADHD cases correctly identified.

• False Negative Rate (
FN

TP + FN
= 1 − Recall) — the fraction of ADHD cases the model fails to

detect.

By maximizing recall (minimizing false negatives), we reduce the risk of under-diagnosing ADHD and the
avoid consequences for those individuals.

Because both Ethnicity and Race comprise more than two subgroups, all disparity metrics below are
computed on a max–min basis—that is, the difference between the subgroup with the highest metric value
and the subgroup with the lowest.

FNR diff FPR diff Demographic Parity ratio Selection Rate diff

Ethnicity 0.4565 0.5000 0.4088 0.4821
Race 1.0000 0.6429 0.0000 0.8889

Table 1: Fairness metrics by group (computed on a max–min basis for multi-class subgroups).
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Figure 5: Pairwise correlation heatmap for all features in the APQ and SDQ questionnaires.

Figure 6: Group-wise performance for PreInt Demos Fam Child Ethnicity
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Figure 7: Group-wise performance for PreInt Demos Fam Child Race

• False Negative Rate Disparity.

– Ethnicity gap of 0.4565 implies some ethnic subgroups are over 45 % more likely to be missed.
– Race gap of 1.0000 reflect the racial group ”Indian” has 0% recall and 100% FNR.

• Demographic Parity Ratio.

– For both groups, the demographic parity ration is lower than common threshold 0.8. Indicating
a highly unbalanced performance across different race and ethnicity groups.

Conclusion. The model exhibits substantial unfairness across both ethnicity and race. Extreme max–min
gaps in FNR and FPR, plus zero demographic parity in Race, indicate that some subgroups are either never
flagged for ADHD (risking under-treatment) or are over-flagged (risking over-treatment).

4.0.2 Shap

To interpret the ADHD classification model, we applied SHAP (SHapley Additive explanations), an approach
to quantify each feature’s contribution to individual predictions.
1. Overall Feature Importance. We computed SHAP values on the validation set and visualized global
feature importance using a beeswarm plot (Figure 8). The most influential features included SDQ SDQ Hyperactivity

and SDQ SDQ Externalizing, highlighting the central role of behavioral attributes in ADHD prediction. High
hyperactivity scores strongly increased the model’s confidence in predicting ADHD, while low scores signif-
icantly reduced the likelihood. Externalizing scores exhibited a similar, though less pronounced, pattern:
higher values tended to increase the predicted probability of ADHD, whereas lower values modestly decreased
it.
2. Feature-wise Analysis. We further explored how individual features contribute to model predictions
by examining SHAP dependency plots (Figure 9 and Figure 10). For SDQ SDQ Hyperactivity, higher values
consistently pushed the model toward predicting ADHD, reflecting a strong and direct association between
hyperactivity and the condition. Similarly, higher values in SDQ SDQ Externalizing generally increased the
predicted probability of ADHD, though with more moderate impact. These patterns indicate that behavioral
hyperactivity and externalizing behaviors—are key drivers in the model’s decision-making process.
3. Individual Prediction Decomposition. To better understand how the model makes decisions at
the individual level, we analyzed SHAP force plots for one high-confidence positive prediction and one
high-confidence negative prediction (Figure 11 and Figure 12). In the positive case, high values for both
SDQ SDQ Hyperactivity and SDQ SDQ Externalizing strongly pushed the model toward predicting ADHD,
as indicated by their prominent positive SHAP values. In contrast, in the negative case, low values for
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Figure 8: SHAP beeswarm plot showing global feature importance for ADHD classification. Each point
represents a sample; color indicates the feature value, and horizontal position reflects impact on model
output.

the same features had a strong suppressive effect on the ADHD prediction, pulling the output well below
the base value. These examples further demonstrate how hyperactivity and externalizing behaviors operate
symmetrically in the model: higher scores raise the predicted ADHD probability, while lower scores reduce
it. Overall, SHAP analysis provides meaningful insights into how the model weighs different aspects of child
behavior in predicting ADHD outcomes.

5 Summary

In this project, we audited a publicly available LightGBM–based ADHD screening model on the WiDS
Datathon 2025 dataset, focusing on both overall performance and subgroup fairness. Our key findings are:

• Fairness concerns. Fairness metrics computed on a max–min basis revealed substantial disparities
across both ethnicity and race groups.

• Model interpretability. SHAP analysis highlighted behavioral features—particularly SDQ Hyperactivity

and SDQ Externalizing—as the most influential drivers of ADHD predictions.
• Possible Mitigation Methods. Possible mitigation strategies include assigning weights to different
subgroups as in-processing and adding threshold optimizer as post-processing.

6 Contribution

Cissy Xie is responsible for the section: Background1, Input and Output2, Shap Analysis4.0.2

Kangrui Yu is responsible for the section: Implementation and Validation3, Fairness4.0.1, Summary5
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Figure 9: SHAP dependency plot for
SDQ SDQ Hyperactivity

Figure 10: SHAP dependency plot for
APQ P APQ P INV

Figure 11: SHAP force plot for a positive ADHD
prediction

Figure 12: SHAP force plot for a negative ADHD
prediction
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