
Untitled 1

 CSCI-SHU 360 Machine Learning Final Competition

 Cissy Xie

Task Overview

Develop a model to classify song snippets into one of four categories: no voices present, male
voice present, female voice present, or more than one person's voices present.

Models Overview

4 Layer CNN Resnet34

Improvement

1. Data Pre-processing

I transform the data into Mel spectrogram using Librosa , then turn the numpy array into a
tensor and add a dimension on the tensor. After Transforming, the size of the unbatched input
tensor is torch.size[1,128,130]

mel_spec = librosa.feature.melspectrogram(y=y, sr=sr)

mel_spec_db = librosa.power_to_db(mel_spec, ref=np.max)

2. Data Augmentation

(1) Time Mask/ Frequency Mask/ Reverse:

I generate time and frequency mask on the Mel spectrogram and reverse the audio waveform
by horizontally flipping the audio samples.

(2) Mix-up

I blend pairs of input data samples and their labels, generating mixed inputs. They are used to
compute the loss, which is a combination of losses calculated for both original and shuffled

CNN 4-layers Architecture
Resnet34 Architecture

Untitled 2

labels, weighted by the mixing coefficient.

(3) Up-sampling based on labels’ weight

To address class imbalance in the dataset, an up-sampling technique based on the weight of
each class label is implemented. I calculate the class weights, converted to a PyTorch tensor,
and passed to the nn.CrossEntropyLoss criterion during model training. This approach helped
mitigate the effects of class imbalance by assigning higher weights to underrepresented
classes.

(4) Human voice separation

I use tools to separate human voice from the song snippets to improve model performance

3. Model Improvement

(1) Change the Input layer of Resnet:

Change the kernel size, stride and padding on the input layer of the Resnet34 from 7,2,3 to 3,1,1

(2) Ensemble the models:

I ensemble the CNN and ResNet34 with weights [0.5, 0.5] and sum their softmax (probabilities)
to predict the class. The test accuracy for each model was 0.7691 and 0.7817 respectively, but
increased to 0.7944 after ensembling.

outputs_cnn = torch.softmax(model1(inputs), dim=1) * weights[0]

outputs_resnet = torch.softmax(model2(inputs), dim=1) * weights[1]

outputs_ensemble = outputs_cnn + outputs_resnet

_, predicted = torch.max(outputs_ensemble.data, 1)

4. Choice of Hyper-Parameters/Scheduler

After experiments on the hyper-parameters/schedulers, I finally decided on the hyper-
parameters/schedulers as shown below:

Model Scheduler Batch Size Initial lr Mixup Alpha Model Weights

CNN 4-layers MultiStepLR 16 0.001 0.4 -

Resnet 34 ReduceLROnPlateau 16 0.005 0.4 -

Resnet34+CNN - - - - 0.5, 0.5

Untitled 3

Model Epoch Train Loss Validation Loss
Validation
Accuracy Test Accuracy

CNN 4-layers 30 0.3828 0.3531 0.8579 0.7691

Resnet 34 24 0.4228 0.2814 0.8852 0.7817

Resnet34+CNN - - - - 0.7944

Requisites

In order to run my code, make sure to install packages below

pip install torch

pip install librosa

Remember to modify the file directory in the Jupyter Notebook

song_dir = "train_aug"

label_dir = "train_label.txt"

test_dir = 'test_aug'

CNN 4-layers Train/Valid Loss and Valid Accuracy Resnet34 Train/Valid Loss and Valid Accuracy

